78 research outputs found

    Gods, Heroes, & Kings: The Battle for Mythic Britain

    Full text link
    The islands of Britain have been a crossroads of gods, heroes, and kings-those of flesh as well as those of myth-for thousands of years. Successive waves of invasion brought distinctive legends, rites, and beliefs. The ancient Celts displaced earlier indigenous peoples, only to find themselves displaced in turn by the Romans, who then abandoned the islands to Germanic tribes, a people themselves nearly overcome in time by an influx of Scandinavians. With each wave of invaders came a battle for the mythic mind of the Isles as the newcomer\u27s belief system met with the existing systems of gods, legends, and myths.In Gods, Heroes, and Kings, medievalist Christopher Fee and veteran myth scholar David Leeming unearth the layers of the British Isles\u27 unique folkloric tradition to discover how this body of seemingly disparate tales developed. The authors find a virtual battlefield of myths in which pagan and Judeo-Christian beliefs fought for dominance, and classical, Anglo-Saxon, Germanic, and Celtic narrative threads became tangled together. The resulting body of legends became a strange but coherent hybrid, so that by the time Chaucer wrote The Wife of Bath\u27s Tale in the fourteenth century, a Christian theme of redemption fought for prominence with a tripartite Celtic goddess and the Arthurian legends of Sir Gawain-itself a hybrid mythology.Without a guide, the corpus of British mythology can seem impenetrable. Taking advantage of the latest research, Fee and Leeming employ a unique comparative approach to map the origins and development of one of the richest folkloric traditions. Copiously illustrated with excerpts in translation from the original sources,Gods, Heroes, and Kings provides a fascinating and accessible new perspective on the history of British mythology. [From the publisher]https://cupola.gettysburg.edu/books/1066/thumbnail.jp

    An index to track the ecological effects of drought development and recovery on riverine invertebrate communities

    Get PDF
    © 2017 Elsevier Ltd In rivers, the ecological effects of drought typically result in gradual adjustments of invertebrate community structure and functioning, punctuated by sudden changes as key habitats, such as wetted channel margins, become dewatered and dry. This paper outlines the development and application of a new index (Drought Effect of Habitat Loss on Invertebrates – DEHLI) to quantify the effects of drought on instream macroinvertebrate communities by assigning weights to taxa on the basis of their likely association with key stages of channel drying. Two case studies are presented, in which the DEHLI index illustrates the ecological development of drought conditions and subsequent recovery. These examples demonstrate persistent drought effects months or several years after river flows recovered. Results derived using DEHLI are compared with an established macroinvertebrate flow velocity-reactive index (Lotic-invertebrate Index for Flow Evaluation – LIFE score) and demonstrates its greater sensitivity to drought conditions. Data from a number of rivers in south east England were used to calibrate a statistical model, which was then used to examine the response of DEHLI and LIFE to a hypothetical multi-year drought. This demonstrated a difference in response between sampling seasons, with the spring model indicating a lagged response due to delayed recolonisation and the autumn model differentiating habitat loss and flow velocity-driven responses. The application of DEHLI and the principles which underlie it allow the effects of drought on instream habitats and invertebrates associated with short or long term weather patterns to be monitored, whilst also allowing the identification of specific locations where intervention via river restoration, or revision of existing abstraction licensing, may be required to increase resilience to the effect of anthropogenic activities exacerbated by climate change

    The fatal trajectory of pulmonary COVID-19 is driven by lobular ischemia and fibrotic remodelling

    Get PDF
    BACKGROUND: COVID-19 is characterized by a heterogeneous clinical presentation, ranging from mild symptoms to severe courses of disease. 9-20% of hospitalized patients with severe lung disease die from COVID-19 and a substantial number of survivors develop long-COVID. Our objective was to provide comprehensive insights into the pathophysiology of severe COVID-19 and to identify liquid biomarkers for disease severity and therapy response. METHODS: We studied a total of 85 lungs (n = 31 COVID autopsy samples; n = 7 influenza A autopsy samples; n = 18 interstitial lung disease explants; n = 24 healthy controls) using the highest resolution Synchrotron radiation-based hierarchical phase-contrast tomography, scanning electron microscopy of microvascular corrosion casts, immunohistochemistry, matrix-assisted laser desorption ionization mass spectrometry imaging, and analysis of mRNA expression and biological pathways. Plasma samples from all disease groups were used for liquid biomarker determination using ELISA. The anatomic/molecular data were analyzed as a function of patients' hospitalization time. FINDINGS: The observed patchy/mosaic appearance of COVID-19 in conventional lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The length of hospitalization was associated with increased intussusceptive angiogenesis. This was associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular profiling and metabolomic analysis. Increased plasma fibrosis markers correlated with their pulmonary tissue transcript levels and predicted disease severity. Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19. INTERPRETATION: Pulmonary severe COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-COVID. FUNDING: This project was made possible by a number of funders. The full list can be found within the Declaration of interests / Acknowledgements section at the end of the manuscript

    COVID-19 risk-mitigation in reopening mass events: population-based observational study for the UK Events Research Programme in Liverpool City Region

    Get PDF
    OBJECTIVES: To understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission risks, perceived risks and the feasibility of risk mitigations from experimental mass cultural events before coronavirus disease 2019 (COVID-19) restrictions were lifted. DESIGN: Prospective, population-wide observational study. SETTING: Four events (two nightclubs, an outdoor music festival and a business conference) open to Liverpool City Region UK residents, requiring a negative lateral flow test (LFT) within the 36 h before the event, but not requiring social distancing or face-coverings. PARTICIPANTS: A total of 12,256 individuals attending one or more events between 28 April and 2 May 2021. MAIN OUTCOME MEASURES: SARS-CoV-2 infections detected using audience self-swabbed (5-7 days post-event) polymerase chain reaction (PCR) tests, with viral genomic analysis of cases, plus linked National Health Service COVID-19 testing data. Audience experiences were gathered via questionnaires, focus groups and social media. Indoor CO2 concentrations were monitored. RESULTS: A total of 12 PCR-positive cases (likely 4 index, 8 primary or secondary), 10 from the nightclubs. Two further cases had positive LFTs but no PCR. A total of 11,896 (97.1%) participants with scanned tickets were matched to a negative pre-event LFT: 4972 (40.6%) returned a PCR within a week. CO2 concentrations showed areas for improving ventilation at the nightclubs. Population infection rates were low, yet with a concurrent outbreak of >50 linked cases around a local swimming pool without equivalent risk mitigations. Audience anxiety was low and enjoyment high. CONCLUSIONS: We observed minor SARS-CoV-2 transmission and low perceived risks around events when prevalence was low and risk mitigations prominent. Partnership between audiences, event organisers and public health services, supported by information systems with real-time linked data, can improve health security for mass cultural events

    Translational pharmacology of an inhaled small molecule αvβ6 integrin inhibitor for idiopathic pulmonary fibrosis

    Get PDF
    The αvβ6 integrin plays a key role in the activation of transforming growth factor-β (TGFβ), a pro-fibrotic mediator that is pivotal to the development of idiopathic pulmonary fibrosis (IPF). We identified a selective small molecule αvβ6 RGD-mimetic, GSK3008348, and profiled it in a range of disease relevant pre-clinical systems. To understand the relationship between target engagement and inhibition of fibrosis, we measured pharmacodynamic and diseaserelated end points. Here we report, GSK3008348 binds to αvβ6 with high affinity in human IPF lung and reduces downstream pro-fibrotic TGFβ signaling to normal levels. In human lung epithelial cells, GSK3008348 induces rapid internalization and lysosomal degradation of the αvβ6 integrin. In the murine bleomycin-induced lung fibrosis model, GSK3008348 engages αvβ6, induces prolonged inhibition of TGFβ signaling and reduces lung collagen deposition and serum C3M, a marker of IPF disease progression. These studies highlight the potential of inhaled GSK3008348 as an anti-fibrotic therapy

    Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host

    Get PDF
    Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology

    Modest effects of dietary supplements during the COVID-19 pandemic: insights from 445 850 users of the COVID-19 Symptom Study app

    Get PDF
    Objectives Dietary supplements may ameliorate SARS-CoV-2 infection, although scientific evidence to support such a role is lacking. We investigated whether users of the COVID-19 Symptom Study app who regularly took dietary supplements were less likely to test positive for SARS-CoV-2 infection.Design App-based community survey.Setting 445 850 subscribers of an app that was launched to enable self-reported information related to SARS-CoV-2 infection for use in the general population in the UK (n=372 720), the USA (n=45 757) and Sweden (n=27 373).Main exposure Self-reported regular dietary supplement usage (constant use during previous 3 months) in the first waves of the pandemic up to 31 July 2020.Main outcome measures SARS-CoV-2 infection confirmed by viral RNA reverse transcriptase PCR test or serology test before 31 July 2020.Results In 372 720 UK participants (175 652 supplement users and 197 068 non-users), those taking probiotics, omega-3 fatty acids, multivitamins or vitamin D had a lower risk of SARS-CoV-2 infection by 14% (95% CI (8% to 19%)), 12% (95% CI (8% to 16%)), 13% (95% CI (10% to 16%)) and 9% (95% CI (6% to 12%)), respectively, after adjusting for potential confounders. No effect was observed for those taking vitamin C, zinc or garlic supplements. On stratification by sex, age and body mass index (BMI), the protective associations in individuals taking probiotics, omega-3 fatty acids, multivitamins and vitamin D were observed in females across all ages and BMI groups, but were not seen in men. The same overall pattern of association was observed in both the US and Swedish cohorts.Conclusion In women, we observed a modest but significant association between use of probiotics, omega-3 fatty acid, multivitamin or vitamin D supplements and lower risk of testing positive for SARS-CoV-2. We found no clear benefits for men nor any effect of vitamin C, garlic or zinc. Randomised controlled trials are required to confirm these observational findings before any therapeutic recommendations can be made

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Implementation of corticosteroids in treating COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK:prospective observational cohort study

    Get PDF
    BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council
    • …
    corecore